
---- EXAMPLE ----
www.iamondemand.com

Managing the Performance of RDBMs in
Amazon Cloud: A Deep Dive

Thanks to a relatively simple
database-scaling capability and
optimized storage for database
workloads, you might assume that
managing their performance in the
cloud has become a simple task. But
this is far from the truth. Database
performance and management is,
even in the cloud, still one of the most
important responsibilities and
challenging task for any DBA, and
requires close attention.

In this article, we will dive deep into the different options for database performance and
management, including a self-hosted database run on a specific EC2 instance or using AWS
DBaaS solutions, such as RDS and Aurora. We will include several examples and performance
benchmarks of self-hosted vs. RDS.

Let’s Start: Performance Benchmarks
For a database on the Amazon cloud, you can choose between a self-hosted AWS EC2
(compute) and an Amazon RDS instance. Keep in mind that if you choose RDS as a solution,
you lose access to the operating system running the database.

We used the sysbench tool and a MySQL database with 50 million rows (approximately 12 GB
of data) to compare the performance of a self-hosted database EC2 instance with that of an
RDS instance.

EC2 Instance
m4.2xlarge; 1TB io1 storage;
3000 IOPS

Amazon RDS
db.m4.2xlarge; 1TB io1 storage;
3000 IOPS

Transactions/sec 398.46 2136.41

© 2021 IOD Cloud Technologies Research Ltd. Reproduction in whole or in part without written permission is prohibited.

https://www.iamondemand.com/
http://www.iamondemand.com
https://aws.amazon.com/rds/
https://github.com/akopytov/sysbench

---- EXAMPLE ----
www.iamondemand.com

Read/Write (sec) 7571.15 40595.05

Min (ms) 2.54 8.71

Avg (ms) 125.47 23.4

Max (ms) 2015.02 679.96

95th percentile (ms) 508.23 41.22

As the test results show, the RDS instance performed better. Nonetheless, we would get an
improvement in performance on the EC2 instance if we were to change the database
configuration file to adjust to the workload –– an option not available on an RDS instance.

Now let’s go over each database option.

Option 1: Self-Hosted on EC2 Instance
If you decide to go for a self-hosted database, you will have full control over your operating
system, database configuration files, and infrastructure. To achieve the best performance,
however, you should pay close attention to compute resources, memory, network throughput,
and storage.

AWS makes it possible – with the click of a button – to alter compute and memory resources by
changing the instance type for your database. This makes selecting the optimal instance type
an easy task. You’ll achieve ideal performance if you use memory-optimized instances, as your
goal is to have as much data in memory as possible. By using these types of instances, you’ll
also reduce the number of direct disc reads and writes.

Due to a large number of transactions and IO, storage is usually the bottleneck for databases.
When launching an EC2 instance, we can choose from two storage options — Instance Store
and Elastic Block Storage. In case of stopping then restarting, the instance data is not persistent
on an Instance Store volume. You can improve database performance by using it as a cache
node, swap partition, or to store temporary files.

Elastic Block Storage (EBS) is a network-attached storage. Two types of EBS storage – General
Purpose SSD (gp2) and Provisioned IOPS (io1) – are key for database performance
improvement. Both types support manual definition of IOPS, which also enable improved
database performance in the cloud. It’s important to select the EBS-optimized instance because
it enables dedicated bandwidth capacity between EBS-optimized instances and EBS Storage
volume.

© 2021 IOD Cloud Technologies Research Ltd. Reproduction in whole or in part without written permission is prohibited.

https://www.iamondemand.com/
http://www.iamondemand.com

---- EXAMPLE ----
www.iamondemand.com

The maximum number of IOPS per gp2 volume is 10000 IOPS, and the maximum throughput is
160 MB/s. This is plenty in the beginning, but as the load and number of IO calls to a database
increase, you will likely need a larger number of IOPS. To that end, and to increase the
performance, you can stripe your volumes using RAID 0 technology. By striping your volumes,
you increase the total number of IOPS, as well as the throughput.

If a large number of reads from your database affects performance, you can redirect the read
traffic to a slave instance (read replica). You can also take advantage of placement groups.
Placement groups enable low network latency and high network throughput. To provide the
lowest latency, and the highest packet-per-second network performance for your placement
group, choose an instance type that supports enhanced networking. It’s important to use private
IP addresses for communication between nodes, so you stay on an internal network.

Option 2: RDS
Amazon RDS is a managed database service that takes care of the underlying hardware and
the operating system, as well as software updates and backups. As you don't have access to
the database host operating system, your options for optimizing database performance are
reduced. That's because some of the properties are predefined and cannot be changed.

You can use read replicas to enhance your database performance on RDS. Using read replicas
in different regions is a very convenient feature. You can improve performance by redirecting
reads to read replicas located in the region closest to the end user. To ensure a sufficient
number of IOPS, you can use Provisioned IOPS Storage. It supports up to 30000 IOPS per
volume.

Option 3: Aurora
In order to improve the performance inside the Amazon cloud, you can use Amazon Aurora.
Aurora is a fully managed, MySQL-compatible relational database engine. You can scale an
Aurora DB instance horizontally up to 15 read replicas, and with MySQL on Amazon RDS you
can have up to 5 read replicas. Aurora also supports cross-region replication. To replicate the
information across the different storage, Aurora only replicates FRM files and data coming from
IB_LOGS, which is a significant advantage over other methods of replications.

Another advantage of Aurora is that it doesn’t use a double write buffer. Writes in Aurora are
organised by filling its commit queue and pushing the changes as a group commit to the
storage. Aurora uses thread pool with multiplexed connections and has the ability to handle over
5000 concurrent sessions, which means that Aurora doesn't use connection pooling, thus
enabling much better CPU utilization. Also, unlike MySQL where query cache was often the
cause of server stalls, Aurora uses an improved version of query cache.

© 2021 IOD Cloud Technologies Research Ltd. Reproduction in whole or in part without written permission is prohibited.

https://www.iamondemand.com/
http://www.iamondemand.com
https://aws.amazon.com/rds/aurora/
http://whatis.techtarget.com/fileformat/FRM-MySQL-table-formatting-file

---- EXAMPLE ----
www.iamondemand.com

Monitoring and Performance
Monitoring and benchmarking are both imperative if you want to proactively prevent
performance issues in the cloud. Noting patterns in database performance equips you with the
information to properly react to and address these issues. But, first you need a plan. When it
comes to monitoring, you need to define goals, identify resources to track, and decide how often
to do so. For benchmarking, you need a baseline for normal database performance in your
environment by measuring performance at various times and under different load conditions.

How to Monitor
You can use Amazon CloudWatch for monitoring and benchmarking your database, AWS
Cloudtrail for log monitoring, and RDS for monitoring event and database log files. Third-party
monitoring tools can also be used.

Thanks to the Enhanced Monitoring feature, RDS and Aurora provides real-time metrics for the
OS hosting your database instance. Enhanced Monitoring gathers its metrics from an agent on
the instance. Since you don't have access to the operating system of the database instance,
you can't manually install monitor agents and plugins, nor can you run batch commands or
powershell scripts. In addition, SQL Server Instant file initialization is not enabled on RDS and
you can't enable it. This means autogrowth events need to be avoided.

Key Metrics
Whether the performance value metrics are acceptable depends on the baseline. As previously
mentioned, a database requires four main resources: CPU, memory, storage, and network.
Metrics on those resources are the key factor for performance monitoring. If you’re monitoring
IO operations, keep an eye on VolumeReadIOPS and VolumeWriteIOPS. If you’re using gp2
storage, monitoring load spikes is very important. VolumeReadBytes and VolumeWriteBytes will
show you the amount of bytes during I/O operations.

We highly recommend checking Amazon documentation on RDS monitoring and Aurora DB
cluster monitoring.

Database Scalability in the Cloud
If database performance is poor, then scaling is the first, though not necessarily the best choice.
If you don’t have your performance metrics properly configured, and if you haven’t identified the
performance bottlenecks, then it’s likely that database scaling won’t solve the performance
issues in the long run.

© 2021 IOD Cloud Technologies Research Ltd. Reproduction in whole or in part without written permission is prohibited.

https://www.iamondemand.com/
http://www.iamondemand.com
https://aws.amazon.com/cloudtrail/
https://aws.amazon.com/cloudtrail/
https://aws.amazon.com/blogs/aws/new-enhanced-monitoring-for-amazon-rds-mysql-5-6-mariadb-and-aurora/
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/CHAP_Monitoring.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Monitoring.html
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/Aurora.Monitoring.html

---- EXAMPLE ----
www.iamondemand.com

As we already mentioned, changing the database instance can be done by a single click of a
mouse. That enables simple vertical scale up of your database. You can choose from 18
different EC2 instances to vertically scale your database. As database storage and instance
type are decoupled, you can scale them independently. You can use read replicas to
horizontally scale your database in cases when there’s heavy read on the database. Another
option is to scale out your database by sharding it into several independent pieces, each
running on its own host.

Improve and Optimize Performance
Long-running queries, poorly designed database schema, and bad indexes are usually bigger
issues for database performance than bottlenecks caused by the hardware. In order to optimize
and improve database performance, your first step is to discover what is causing the problems.
Database testing is of paramount importance for optimal performance. You can use various
third-party tools to track performance on different workloads.

You don’t have to optimize the placement of tablespace files to optimize read and write
operations at the physical device level, however it’s still probable that storage is causing the
bottleneck. Therefore, divide the data files from log files onto separate EBS volumes. GP2
volumes have the ability to burst to 3,000 IOPS per volume, independent of volume size, to
meet the occasional spike in performance needs. This ability is very useful for a database, as
you can predict normal IOPS needs well, but you might still find a higher spike from time to time
based on specific workloads.

If you need more IOPS and throughput than GP2 can provide, then PIOPS is the right choice. If
you select an IOPS number based on average IOPS used by your existing database, then you
will have sufficient IOPS to service the database in most cases, but database performance will
suffer at peak load.

You should query the system tables over time and identify the peak IOPS usage by the existing
database. That is the best way to estimate actual IOPS needed for your database. Throughput
is the measure of the transfer of bits across the network between the Amazon EC2 instance
running your database and the Amazon EBS volumes.

The throughput might be directly related to the network bandwidth available to the Amazon EC2
instance and the capability of Amazon EBS to receive data. Bandwidth and throughput to the
storage subsystem are crucial for good database performance. You should choose instances
with higher network performance for better database performance.

A Final Note
There is no silver bullet when it comes to database performance.

© 2021 IOD Cloud Technologies Research Ltd. Reproduction in whole or in part without written permission is prohibited.

https://www.iamondemand.com/
http://www.iamondemand.com

---- EXAMPLE ----
www.iamondemand.com

Every database requires a different approach. One of the best ways to improve database
instance performance is to tune your most commonly used and most resource-intensive queries
to make them less expensive to run. Proper monitoring and testing under different workloads
can help you optimize and enhance database performance.

© 2021 IOD Cloud Technologies Research Ltd. Reproduction in whole or in part without written permission is prohibited.

https://www.iamondemand.com/
http://www.iamondemand.com

